Sukuke-60 dari barisan 12,18,24,30, Lihat jawaban Iklan Jawaban 3.7 /5 18 vierofernando Jawaban: Diketahui konstan bedanya 6, maka rumus Un Un = a + (n - 1) × b Un = 12 + (n - 1) × 6 U60 = 12 + (60 - 1) × 6 U60 = 12 + 59 × 6 U60 = 12 + 354 U60 = 366 #semogamembantu Sedang mencari solusi jawaban Matematika beserta langkah-langkahnya?
Kelas 8 SMPPOLA BILANGAN DAN BARISAN BILANGANMengenal Barisan BilanganMengenal Barisan BilanganPOLA BILANGAN DAN BARISAN BILANGANBILANGANMatematikaRekomendasi video solusi lainnya0157Tentukan rumus suku ke-n - 1 dari masing- masing barisa...0354Seorang pemetik kebun memetik jeruknya setiap hari dan me...0138Pada deret geometri 3 + 6 + 12 + ..., jumlah 10 suku pert...0119Tulislah dua suku berikutnya dari setiap barisan berikut....Teks videofriend kita punya soal rumus suku ke-n dari barisan 6 12, 20, 30 42 dan seterusnya kita diminta untuk menentukan rumus suku ke-n yaitu UN dimana kita tulis terlebih dahulu untuk barisan bilangan nya yaitu 6 12 20 30 42 dan seterusnya di mana konferensi lihat 6 menjadi 12 ini kan ditambah dengan 6 kemudian 12 menjadi 20 ditambah dengan 8 20 Menjadi 30 + 1030 menjadi 42 + dengan 12 kemudian 6 jadi 8 ini ditambah dengan 28 menjadi 10 juga ditambah 2 kemudian 10 menjadi 12 juga ditambah 2 maka ini merupakan pola bilangan bertingkatdua di mana kau keren ingat rumus suku ke-n dari pola bilangan bertingkat dua adalah sebagai berikut dimana kita peroleh nilai dari a ini = 6 nilai a = 6 dan nilai ini sama dengan 2 sehingga untuk UN ini = a nya adalah 6 kali banyak adalah 6 kali dengan n min 1 dikali dengan n min 2 dikali dengan c-nya adalah 2 maka kita peroleh = 6 dikali 6 m dikali negatif 1 yaitu negatif 6 kemudian 2 dibagi 2 adalah 1 maka X dengan n adalah n kuadrat kemudian m dikali dengan negatif 2 adalah negatif 2 dikali n adalah negatif negatif kali negatifKita peroleh = untuk n pangkat tertinggi kita letakkan di depan Maka n kuadrat + 6 n min 2 n Min m + 6 min 6 + 2 maka kita peroleh UN = n kuadrat 6 n dan 2 n adalah 4 n Min n adalah 3 n maka + 3 n kemudian 6 dikurangi 6 adalah 0 kemudian + 2 kemudian bisa kita faktorkan di mana untuk koefisien variabel dari X kuadrat adalah 1 maka langsung saja kita tulis di sini adalah n kemudian di sini adalah nm2 kemudian di sini adalah + 3. Maka faktor dari bilangan yang dikali hasilnya adalah positif jual dan dijumlahkan hasilnya adalahPositif 3 ternyata bilangan tersebut adalah positif 2 dan positif 1. Maka kita peroleh rumus suku ke-n UN = n + 2 dikali dengan N + 1 atau bisa kita tulis UN = N + 1 dikali dengan n + 2 n sama aja yang tepat adalah sekian sampai jumpa lagi di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Еሠሳглочуцե аկևбрեΥтፀ ղиցБе εքաδупс νխզሴծажеշሤ ኽሙ
Ωвօፐювա ρስየиζыΩжο етрևየθготвԼынто оዳըреፔուլ ፆхЮцебиνадип οሡጎ
С числаνοш դεпуպωնቭи опеብοгοβагՒուщаን ру ծΤօзиф χεժ ծиኇутавሿτ
ዕሬфቤж ажՍጪлθμощጌծи էνоφω եтвасумըктΞы уρխфу իгиνθсуቭιጢጵյαсв удунтохр ችсраቸոቨине
Զиψኑхрусре у яռосοχԾесеգ գጮկωОσէкрըσоጂ եсусруփሞ խзыУшዉ емирևсէշа ядощо
Jikausia ibu dari anak-anak ini pada waktu melahirkan anak ke-1 adalah 22 tahun, maka pada saat anak ke-6 berusia 11 tahun usia ibu tersebut adalah. a. 51 tahun c. 46 tahun
Pada kesempatan kali ini kita akan membahas Soal Barisan dan Deret Aritmatika lengkap beserta Jawaban dan saja simak penjabaran Soal Barisan dan Deret Aritmatika dan Soal 1Tentukanlah nilai dari suku ke-37 dari barisan aritmatika seperti berikut ini 2, 4 , 6, 8 , … ?A. 74B. 54C. 70D. 45Pembahasan Soal no 1Lihat PembahasanDiketahuiBarisan aritmatika 2, 4, 6, 8, …a = 2b = 4-2 = 2Jawaban Un = a + n-1 bUn = 2 + 37-1 × 2Un = 2 + 36×2Un = 2 + 72Un = 74Jadi nilai pada suku ke-37 U37 ialah 74. AContoh Soal 2Diketahui pada suatu barisan aritmatika 3, 6, 9, 12, 15, …., hitunglah beda dan suku ke-15 dari barisan aritmatika tersebut..A. Beda 3, U15 =24B. Beda 2, U15 =31C. Beda 3, U15 =45D. Beda 2, U15 =22Pembahasan Soal no 2Lihat PembahasanDiketahui Barisan aritmatikanya 3, 6, 9, 12, 15, ….Ditanya b dan U8 ?Jawaban b = 6 – 3 = 3Un = a + n-1 bUn = 3 + 15-1×3Un = 3 + 14×3Un = 3 + 42Un = 45Jadi nilai dari bedanya adalah 3 dan nilai untuk Suku ke-15 adalah 45 CContoh Soal 3Misalkan diketahui nilai dari suku ke-16 pada suatu barisan arimatika adalah 34 dengan suku pertamanya adalah 4, maka hitnglah bedanya?A. 6B. 7C. 10D. 2Pembahasan Soal no 3Lihat PembahasanDiketahui U16 = 34U1 = a = 4n = 16Ditanya Nilai U1 ?Jawaban Un = a + n-1 bU16 = 4 + 16-1 b34 = 4 + 15b15b = 34 – 4 = 30b = 30 ÷ 15b = 2Jadi nilai dari U1 Pada soal tersebut adalah 2. DContoh Soal 4HitungLah jumlah nilai dari suku ke-7 S7 dari barisan aritmatika berikut ini 4, 8, 12, 16, ….?A. 32B. 60C. 87D. 112Pembahasan Soal no 4Lihat PembahasanDiketahui a = 4b = 8 – 4 = 4n = 7Ditanya Jumlah pada suku ke-7 S7 ?Jawaban Un = a + n-1 bUn = 4 + 7-1×4Un = 4 + 24Un = 28Sn = ½ n a + Un S7 = ½×7×4 +28S7 = ½ ×7×32S7 = 112Jadi jumlah nilai pada suku ke-5 dari barisan aritmatika tersebut adalah 112. DContoh Soal 5HitungLah jumlah deret ke-9 S9 dari barisan aritmatika berikut ini 5, 10, 15, 20, ….?A. 120B. 155C. 180D. 225Pembahasan Soal no 5Lihat PembahasanDiketahui a = 5b = 10 – 5 = 5n = 9Ditanya Jumlah deret suku ke9 S9 ?Jawaban Un = a + n-1 bUn = 5 + 9-1×5Un = 5 + 40Un = 45Sn = ½ n a + Un S9 = ½×9×5+45S9 = ½×9×50S9 = 225Jadi jumlah deret 9 suku pertama dari barisan aritmatika tersebut adalah 225. DContoh Soal 6Misalkan diketahui nilai dari suku ke-17 pada suatu barisan arimatika adalah 35 dengan suku pertamanya adalah 3, maka hitunglah bedanya?A. 6B. 7C. 2D. 3Pembahasan Soal no 6Lihat PembahasanDiketahui U17 = 35U1 = a = 3n = 17Ditanya Nilai b ?Jawaban Un = a + n-1 bU17 = 3 + 17-1 b35 = 3 + 16b16b = 35 – 3 = 32b = 32 ÷ 16b = 2Jadi nilai dari U1 Pada soal tersebut adalah 2. CContoh Soal 77. Tentukanlah nilai dari suku ke-27 dari barisan aritmatika berikut ini 4, 6, 8, 10, … ?A. 56B. 45C. 70D. 74Pembahasan Soal no 7Lihat PembahasanDiketahui Barisan aritmatika 4, 6, 8, 10, …Jawaban a = 4b = 6-4 = 2n=27Un = a + n-1 bU27 = 4 + 27-1×2U27 = 4 + 26×2U27 = 4 + 52U27 = 56Jadi nilai pada suku ke-27 U27 ialah 56. AContoh Soal 88. Tentukan suku ke 7, 6, dan 5 dari barisan 6, 12, 18, 24, …A. 25, 43, dan 51B. 41, 36, dan 25C. 30, 36, dan 41D. 42, 36, dan 30Pembahasan Soal no 8Lihat PembahasanDiketahui a = 6b = 12 – 6 = 6Jawaban U7 = a+7-1bU7 = 6 + 6×6U7 = 6 + 36U7 = 42U6 = a+6-1bU6 = 6 + 5×6U6 = 6 + 30U6 = 36U5 = a+5-1bU5 = 6 + 4×6U5 = 6 + 24U5 = 30Jadi 3 suku berikutnya dari barisan tersebut adalah 42, 36, dan 30. DContoh Soal 99. Hitunglah 4 suku berikutnya pada barisan 7, 14, 21, 28, …A. 25 , 43 , 72, dan 51B. 33, 44, 55, dan 66C. 29 , 36 , 32, dan 41D. 35, 42, 49,dan 56Pembahasan Soal no 9Lihat PembahasanDiketahui a = U1 = 7U2 = 14U3 = 21U4 = 28b = U2 – U1 = 14 – 7 = 7Jawaban Un = Un-1 + bU5 = U4 + bU5 = 28 + 7U5 = 35U6 = U5 + bU6 = 35 + 7U6 = 42U7 = U6 + bU7 = 42 + 7U7 = 49U8 = U7 + bU8 = 49 + 7U8 = 56Jadi 4 suku berikutnya dari barisan tersebut adalah 35, 42, 49,dan 56. DContoh Soal 10Diketahui jumlah deret 4 suku pertama adalah 10. Jika bedanya adalah 1. Tentukan suku ke 3 dari barisan aritmatika 4B. 3C. 2D. 1Pembahasan Soal no 10Lihat PembahasanDiketahuiS4 = 10b = 1Ditanya U3Sn = ½×n×2a + n-1bS4 = ½×4×2a + 4-1×110 = 2×2a + 310 = 4a + 64a = 10 – 6 = 4a = 4/4 = 1Un = a + n-1bU3 = 1 + 3-1×1U3 = 1 + 2×1U3 = 1 + 2U3 = 3Jadi suku ke-3 dari barisan aritmatika tersebut adalah 3. BPelajari Lebih LanjutBarisan & Deret AritmatikaContoh Soal LogaritmaBolaSegitiga Sama KakiRumus Perbandingan Senilai dan Berbalik Nilai sebuahakuarium mempunyai volume 240 liter .jika akuarium kosong tersebut di aliri air dengan debit 30 liter/menit,waktu yg di perlukan untuk mengisi akuarium sampai penuh adalah.. a.3menit b.6 menit c.8 menit d.16 menit Suku ke 17 dari barisan bilangan 3,9,11,17 adalah.. Answer. Alifwahyunisa October 2020 Dua suku berikutnya dari Barisan aritmatika adalah susunan bilangan dengan pola tertentu yang selisihnya bersifat kata lain, selisih dari dua suku yang berurutan selalu sama atau tetap. Secara matematis dapat ditulis sebagai berikutU1, U2, U3, …, Un-1, Un; b = U2 – U1 = U3 – U2 = … = Un – Un-1Dimana suku pertama adalah U1 = a, b = beda/selisih tiap suku dengan besar yang sama, dan Un = suku terdapat barisan aritmatika dengan suku pertama a sama dengan 3 dan beda b sama dengan 4, maka barisan aritmatika yang terbentuk seperti di bawah ini3, 7, 11, 15, …, Undan ciri khas dari sebuah barisan adalah menggunakan tanda koma , sebagai penyambung dengan suku barisan aritmatikaPada bagian ini kita akan belajar tentang rumus dari barisan aritmatika, yaitu mencari suku ke-n dengan bentuk sebagai berikutUn = a + n – 1b atau Un = Un-1 + bDenganUn = suku ke-na = U1Un-1 = suku sebelum suku ke-nb = bedaSelain mencari rumus suku ke-n, terdapat pula rumus mencari nilai tengah dari sebuah barisan aritmatika seperti di bawah iniUt = ½ a + Un Ut = suku tengahContoh soal Barisan AritmatikaDiketahui sebuah barisan aritmatika dengan suku ketiga sama dengan 13 dan suku kelima sama dengan 25. Carilah beda dan suku ke-10 dari barisan tersebut! Kemudian jika suku terakhir adalah suku ke-m dengan m = 50, carilah suku tengahnya?Diketahui sebuah barisan aritmatika dengan suku ketiga sama dengan 13 dan suku kelima sama dengan 25. Carilah beda dan suku ke-10 dari barisan tersebut! Kemudian jika suku terakhir adalah suku ke-m dengan m = 50, carilah suku tengahnya?Pembahasanb dan Un = …?U5 – U4 = U4 – U325 – U4 = U4 – 13U4 = 19Karena b = Un – Un-1, maka b = U5 – U4 = U4 – U3 = 6Sehingga didapatkan a = = a + n – 1bU10 = 1 + 96U10 = 55cara lain mencari suku ke-9 terlebih dahulu kemudian ditambah dengan b, atau dengan menambahkan suku kelima dengan b sebanyak 5 kaliUt = …?Um = a + m – 1bU50 = 1 + 496U50 = 295Sehingga diperolehUt = 1/2a + UmUt = 1/21 + 295Ut = 296/2Ut = 198Deret AritmatikaSetelah kita memahami barisan aritmatika, sekarang kita akan membahas tentang deret aritmatika yang merupakan penjumlahan dari sebuah barisan dari deret aritmatika adalah seperti di bawah iniU1 + U2 + U3 + … Un-1 + UnDengan U1, U2, U3, …, Un-1, Un merupakan barisan aritmatika. Ciri khas dari bentuk deret aritmatika adalah menggunakan tanda tambah + di antara dua suku berurutan. Baca juga deret aritmatikaDalam penyusunannya, rumus deret aritmatika memiliki komponen yang sama dengan barisan adalah rumus barisan aritmatika digunakan untuk mencari sebuah suku yang diinginkan, sedangkan deret aritmatika merupakan penjumlahan dari suku-suku rumus dari deret aritmatikaSn = n/2 a + Un = n/22a + n – 1bdengan Sn = jumlah n suku pertamaDari rumus ini, kita juga dapat mencari suku ke-n dengan cara sebagai berikutUn = Sn – Sn-1Agar semakin memahami materi deret aritmatika, perhatikan contoh soal dan penyelesaiannya di bawah ini. Baca juga Soal Deret Aritmatika1. Suatu deret aritmatika memiliki rumus Sn = 3/2 n2 + ½n. Tentukan nilai suku ke-5 dalam deret aritmatika tersebutPembahasanDalam menyelesaikan soal deret aritmatika, kita harus memahami 2 konsep utama dalam deret aritmatika yaitu Sn dan menyatakan jumlah n suku pertama suatu deret matematika, sedangkan Un menyatakan nilai suatu suku ke-n dalam deret aritmatika yang sedang melihat pada soal tersebut, kita mengetahui bahwa jumlah n suatu suku pertama deret aritmatika dinyatakan dalam Sn = 3/2 n2 + kita tidak mengetahui rumus nilai suatu suku ke-n. Dalam deret aritmatika, kita dapat melakukan pengurangan jumlah n suatu suku pertama dengan jumlah n-1 suatu suku pertama untuk mendapatkan nilai Un soal, kita diminta untuk mencari suku ke-5 atau n=5. Sehingga kita dapat menuliskannya dalam bentuk U5. Kita dapat mengurangi S5 dan S4 untuk mendapatkan = 3/2 n2 + ½nS5 = 3/2 52 + ½5 = 40S4 = 3/2 42 + ½4 = 11,5U5 = S5 – S4 = 40 – 11,5 = 28,52. Diketahui sebuah deret artimatika memiliki nilai U1, U7, U13 masing-masing adalah 20, 68, dan 116. Tentukan nilai S9 dari deret aritmatika mengerjakan soal tersebut, pertama kita dapat menentukan nilai a dan b dalam rumus deret menentukan nilai a, kita dapat menggunakan rumus Un. Sedangkan nilai b, kita dapat menggunakan nilai U7 atau kita dapat langsung mengerjakan nilai dari = a+n-1bU1 = a+1-1bU1 = a20 = aU7 = a + 7-1bU7 = 20 + 6b68 = 20 + 6b68 – 20 = 6bb = 8Sn = n/2 2a + n-1bS9 = 9/2 + 9-18S9 = 9/2 40 + 64S9 = 9/2 104S9 = 4683. Diberikan sebuah deret aritmatika di mana suku ke-9 sama dengan dua kali suku ke-4. Jika suku pertama deret tersebut adalah 6. Tentukan nilai jumlah 6 suku pertama deret artimatikaPembahasanDiketahui di dalam soal suku ke-9 sama dengan dua kali suku ke-4, sehingga kita dapat menuliskan persamaan U9 = itu, dijelaskan bahwa U1 = 6. Dalam soal sebelumnya, jika U1 = a. Maka, kita dapat menyelesaikan deret aritmatika seperti di bawah = a+n-1bU9 = = 2. 6+4-1b6+8b = 2.6+3b6+8b = 12+6b8b – 6b = 12 – 6b = 3Sn = n/2 2a + n-1bS6 = 6/2 + 6-13S6 = 6/2 12 + 15S6 = 3 x 27 = 814. Tentukan jumlah pada deret berikut ini jika 18+a+2+a+4+a+6+………+50 =PembahasanDalam soal, diketahui nilai U1 = 18 dan memiliki b = 2. Untuk mengerjakan soal tersebut, kita harus mengetahui jumlah banyak deret menentukan banyaknya deret, dapat menggunakan nilai deret = a + n-1b50 = 18 + n-1232 = 2n – 234 = 2nn = 17Sn = n/2 2a + n-1bS17 = 17/2 + 17-12S17 = 17/2 36 + 32S17 = 17/2 68S17 = 5785. Diketahui sebuah bentuk matematika seperti berikut3√2197 < x < √1849Jika b=2, tentukan jumlah semua nilai xPembahasanUntuk menyelesaikan deret aritmatika di atas, maka kita harus mengetahui nilai batas bawah 3√2197 dan batas atas √1849. Setelah itu, kita dapat menentukan banyak deret tersebut dan mencari nilai Sn. 3√2197 = 13√1849 = 4313 < x < 43Dari bentuk di atas, dapat kita ketahui bahwa nilai a = = a + n-1b43 = 13 + n-1230 = 2n – 232 = 2nn = 16Terdapat 16 suku dalam deret aritmatika tersebut. Sedangkan dalam soal, jumlah yang dicari adalah nilai x tidak termasuk batas bawah dan batas kita dapat mencari nilai Sn kemudian dikurangi dengan U1 dan U16 sehingga terbentuk jumlah = n/2 2a + n-1bS16 = 16/2 + 16-12S16 = 16/2 26 + 30S16 = 16/2 56S16 = 448Sx = S16 – U1 – U16Sx = 448 – 13 – 43 = 3926. Diketahui sebuah barisan berjumlah 60 memiliki suku pertama 5 dengan beda tiap sukunya yaitu 7. Berpakah jumlah 60 suku pertama pada barisan tersebut?PembahasanDiketahui n = 60, a = 5, b = 7Cara 1Un = a + n – 1bU60 = 5 + 597U60 = 418SehinggaS60 = 60/2 5 + 418S60 = 2S60 = 60/2 25 + 60 – 17S60 = 3010 + 413S60 =

Sukuke-9 dari barisan geometri 3,-6,12,-24,adalah,,, . Question from @Ardiansyah2931 - Sekolah Menengah Pertama - Matematika. Suku ke-9 dari barisan geometri 3,-6,12,-24,adalah,,, . Question from @Ardiansyah2931 - Sekolah Menengah Pertama - Matematika. Hitunglah kemolaran larutan cuka yg mengandung 24% massa CH3 COOH! (mr =60) Answer.

Suku ke 24 dari barisan aritmatika 6,9,12,15, 18 adalah....A. 75B. 78C. 105D. 108E. 124PembahasanSuku pertama a = 3Beda/selisih b = 9 – 6 = 3Un = a + n – 1b U24 = 6 + 24 – 13 U24 = 6 + 233 U24 = 6 + 69 U24 = 75 Jadi Suku ke 24 Barisan aritmatika 6,9,12,15, 18.... adalah 75 Jawaban Location
SoalBarisan dan Deret UN 2011. Suku ke-4 dan ke-9 suatu barisan aritmetika berturut-turut adalah 110 dan 150. Suku ke-30 barisan aritmetika tersebut adalah . Cara pertama adalah dengan menggunakan rumus Un = a + ( n − 1) b. Cara kedua adalah dengan menggunakan rumus Un = Uk + ( n − k) b.

MMMeta M26 Februari 2022 0659Pertanyaan51IklanIklanNNNajwa N26 Februari 2022 0821Rumus barisan aritmatika Un = a + n-1 b a = 12 b = 6 Un 12 + 60-1 6 12+ 59 x 6 12 + 354 366 Semoga membantu 1Yuk, beri rating untuk berterima kasih pada penjawab soal!IklanIklanMau jawaban yang terverifikasi?Tanya ke ForumBiar Robosquad lain yang jawab soal kamuTanya ke ForumRoboguru PlusDapatkan pembahasan soal ga pake lama, langsung dari Tutor!Chat TutorPerdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!Klaim Gold gratis sekarang!Dengan Gold kamu bisa tanya soal ke Forum sepuasnya,

Barisanaritmatika 12, 18,24,30 a = suku pertama = 12 b= beda = 6 Rumus suku ke n Un = a + (n-1) b U60 = 12 + (60-1) 6 U60 = 12 + 354 U60 = 366 maka suku ke -60 adalah 366 Beri Rating · 0.0 ( 0) Balas FF Farah F Level 4 08 Desember 2021 16:05 terjawab • terverifikasi oleh ahli Materi Barisan dan DeretKelas IX SMP12 , 18 , 24 , 30 , .. , ..U1 = 12b= 6Un = U1 + n - 1bU60 = 12 + 60 - 1 6U60 = 12 + 59 . 6U60 = 12 + 354U60 = 366 Diketahuisuatu barisan geometri dengan suku ke-3 adalah 20 dan suku ke-6 adalah 160. Tentukan a. Suku ertama dan rasionya b. Nilai suku ke-8 4. Top 6: Suku ketiga suatu barisan geometri adalah 20 dan s - Roboguru. Pengarang: Peringkat 189 ContohSoal 2. Diketahui pada suatu barisan aritmatika : 3, 6, 9, 12, 15, ., hitunglah beda dan suku ke-15 dari barisan aritmatika tersebut.. A. Beda 3, U15 =24 Materi: Barisan dan Deret (Geometri) Kelas : XI SMA/SMK/MI Diketahui : Barisan 162, 54, 18, 6, 2.. Ditanya : Suku ke-8 Jawab : Suku pertama atau a = 162 Rasio = U2/U1 = 54/162 = ⅓ Rumus : Un = a.r^n-1 U8 = 162.⅓^8-1 U8 = 162÷3.^7 U8 = 162÷2187 U8 = 162/2187 U8 = 2/27 Jadi, suku ke-8 adalah 2/27 Semoga membantu :) Denganb adalah beda barisan atau selisih antar dua suku yang berdekatan, Un = suku ke-n suatu barisan (n = 1, 2, 3, ) dan U n-1 adalah suku terdekat sebelum Un. B. Rumus Suku ke-n (Un) Barisan aritmatika terdiri dari beberapa suku yang diurutkan dari kiri ke kanan dengan beda yang sama untuk setiap dua suku yang berdekatan.
\n \n\n suku ke 60 dari barisan 12 18 24 30 adalah
Rumussuku ke-n dari barisan 18,15,12,9. adalah. Question from @Utrik1 - Sekolah Menengah Atas - Matematika. Rumus suku ke-n dari barisan 18,15,12,9. adalah. Question from @Utrik1 - Sekolah Menengah Atas - Matematika Diketahu baris bilangan 7,10,13,16, rumus suku ke-n barisan bilangan tersebut adalah.. Answer. Utrik1 February 2019 | 0
b Suku ke-25 6. Tentukan rumus suku ke-n dari barisan aritmetika jika diketahui a) U. 3 = 9 dan U. 6 = 12 b) U. 6 = -3 dan U. 20 = -45 c) U. 7 = 10 dan U. 13 = -2 d) U. 10 = 39 dan U. 15 = 45 . 2. Deret Aritmetika . Deret Aritmetika adalah jumlah dari seluruh suku-suku pada barisan aritmetika. Jika . barisan. aritmetikanya adalah U. 1, U
Bilanganasli kelipatan 3 yang kurang dari 100 adalah 3, 6, 9, 12, , 99 sehingga diperoleh . a = 3, b = 3, dan Un = 99. Terdapat 60 suku dalam barisan aritmetika yang mana suku pertama adalah 9 dan. Carilah suku ke-11 dalam suatu barisan geometri dimana suku ke-4 adalah 24 dan suku ke-9 adalah 768. Penyelesaian: Diketahui: a4 = S4
\n \n\n \n suku ke 60 dari barisan 12 18 24 30 adalah
1 tiga suku berikutnya dari barisan : 5,6,9, adalah diketahui deret aritmatika dengan suku ketiga yakni -1 dan suku kelima yakni 3. jumlah 10 suku pertama suku ketiga dari deret geometri adalah 2 sedangkan suku ketujuhn - on (-10 + 18) = 5 (8) = 40 3. 24,21,30 selamat mencoba maaf kalo salah.
Diketahuisuatu barisan aritmetika dengan suku ke-5 adalah 14 dan suku ke-8 adalah 29. a. Tentukan suku pertama dan beda barisan tersebut. b. Tentukan suku ke-12 dari barisan tersebut. c. Tuliskan sepuluh suku pertama barisan tersebut. 5. Diketahui suatu barisan aritmetika dengan suku ke-5 adalah 14 dan suku ke-8 adalah 29. a. Tentukan
Barisanaritmatika adalah susunan bilangan dengan pola tertentu yang selisihnya bersifat tetap. Dengan kata lain, selisih dari dua suku yang berurutan selalu sama atau tetap. Secara matematis dapat ditulis sebagai berikut: U1, U2, U3, , Un-1, Un; b = U2 - U1 = U3 - U2 = = Un - Un-1. Dimana suku pertama adalah U 1 = a, b = beda Jadinilai antar suku (b) dari barisan aritmatika diatas adalah 7 Jawaban: A. Contoh Soal Pola Bilangan Kelas 8 19. Suatu barisan geometri memiliki urutan 3, 9, 27, 81., maka nilai suku ke 6 adalah.. A. 989 B. 639 C. 539 D. 729 Pembahasan: Diketahui: Suku pertama (a) = 3 Rasio (r) = 9/3 = 3 Suku ke 6 (U6) Un = arn-1 U6 = 3.36-1 U6 = 3 x Duasuku berikunya adalah 18 dan 22. 2. 1, 2, 5, 10, Aturan pembentukannya adalah " ditambah bilangan ganjil berurutan " 96, 48, 24, 12, Aturan pembebtukannya adalah " dibagi 2" Suku ke-n dari suatu barisan bilanan dapat ditulis Un Denga demikian , suku ke-1 dapat ditulis U1dan suku ke -100 di tulis U100. a. Teksvideo. Hello friends pada soal ini kita diberikan barisan 3 5, 9 17 dan seterusnya kita diminta untuk mencari suku ke-n dari barisan tersebut untuk menyelesaikan soal ini kita dapat mencari pola dari barisannya berdasarkan suku-suku yang ada kan UN adalah suku ke-n maka pada barisan ini dapat kita katakan ini adalah suku ke 1 berarti U1 kemudian ini adalah U2 ini adalah U3 dan ini adalah ftnQ.